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Abstract

The phase-rotation FFFT is a new form of the FFT that replaces data movement with multiplications by'

constant phasor multipliers. The result is an FFT that is simple to pipeline. This paper reports some
fundamental new improvements to the original phase-rotation FF1' design, provides a complete description
of the algorithm directly in terms of the parallel pipeline, and describes a radix-2 implementation on the
iWarp computer system that balances computation and communication to run at the full-bandwidth of the
communications links, regardless of the input data set size.
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1. Introduction

The Fast Fourier Transform (FF1') is an important algorithm with many applications in signal processing
and scientific computing. The Whelchel phase-rotation FFT [91 derives from the Pease constant-geometry
FFT [7], which itself derives from the original Cooley-Tukey FF1 [41 expressed in terms of Kronecker
products.

The phase-rotation FFT of radix r is designed for a pipeline of r parallel data channels. At each time
step, in each stage, the pipeline carries the next r data points, one from each channel, into a Discrete Fourier
Transform (DFT) kernel. Unlike earlier pipelined FFT's [5, 61, the phase-rotation FFT has the key property
that no data is switched across channels, except within the DFT kernel and at the input and output. The
phase-rotation approach extends easily to higher radices, reducing memory and latency while preserving
the high throughput and parallel shuffling simplicity of lower radix versions. The phase-rotation FF1' has
also been extended to a vector-radix, multidimensional parallel-pipeline FFT with the same qualities of the
one-dimensional algorithm, and without transposes [101.

This paper describes the results of a project to implement the phase-rotation FFT on a parallel computer
system. There are three main results: First, the digit-reversing shuffle step in the original version of the
phase-rotation FF1' [91 is a potential pipeline bottleneck because it requires communication between the data
channels. We describe a new version that corrects this problem by using a parallel-pipeline digit-reversing
step.

Second, although the structure of the phase-rotation FFT is extremely simple, we have learned from
experience that generating the appropriate twiddles and shuffle indices from the original matrix formula-
tion [91 is quite difficult, even for the designers of the algorithm! To try to help the implementer, we have
reformulated the phase-rotation FFT. We present a new set of recipes for generating the twiddles and shuffle
indices directly in terms of the parallel pipeline.

Finally, we describe mapping strategies for the phase-rotation FFT on the iWarp, a parallel computer
system developed by Intel and Carnegie Mellon [ I, 21. We describe a fine-grained approach for an .N -point
radix-2 phase-rotation FFT that balances computation and communication to run at the full 40 MbN tes/sec
rate of the iWarp physical links, regardless of the size of the input data sets.

Section 2 introduces the phase-rotation concept. Section 3 formally defines the improved FF1' algorithm.
Section 4 gives the recipes for generating the twiddles and shuffle indices in terms of the parallel pipeline.
Finally, Section 5 describes the full-bandwidth implementation on iWarp.

2. The basic idea

This section introduces the concept of the phase-rotation UF-T. Starting with the Pease constant-Leometrv
FFT, we informally derive the pipelined phase-rotation FFT, identifying the key insights along the •,v.



2.1. Constant-geometry FFT

Figure 1(a) shows the flowgraph for a radix-r N-point decimation-in-frequency (DIF) constant-geometrv
FFT, with r = 2 and X = r" = 8. There are n stages. Each stage contains N/r kernels. Each kernel is an
operator that performs an r-point DFT. For radix 2. each kernel inputs two complex numbers and outputs
two complex numbers. (For simplicity, twiddles are not explicitly shown in the flowgraph.)

Each stage in the constant-geometry FFT performs an identical perfect stride-by-.s shuffle of it, data
vector, where .s = N/r. If the data vector is regarded as an .s x r array, stored in column-major order,
then the perfect shuffle simply transposes it into an r x .s array. For example, the following transpose is a
stride-by-4 perfect shuffle, for N' = 8 points and radix r = 2:

0 4
1 5 __T [0 123

2 6 4[ 5 6 7

The data items in example above, labeled by their indices in the original column vector, are regarded as
equivalent to a 4 x 2 array composed by a stride-by-4 unstacking of the 8-point column vector. After the
transpose, the 2 x 4 array is equivalent to a new 8-point column vector composed by a stride-by-2 stacking.
As we shall see, this transpose creates difficulties when we try to pipeline the constant-geometry FFT. And
it is precisely these difficulties that the phase-rotation FFT addresses.

2.2. Pipelining the FFT

Each stage of the constant-geometry FFT can be computed on a single processor by pipelining the data.
For example, Figure 1(b) shows the pipeline for a single stage with radix r = 2. The pipeline consists
of a sequence of operators connected by pipeline segments. Each pipeline segment consists of r parallel
channels. Each channel carries a stream of N/r data points, which are labeled in this example by their
indices from the original column vectors in Figure I(a). For each pipeline segment, the t data points in the
same position in each stream are known as an r-fraine, or simply, afrane. For example. in Figure I(b). the
first frame in the pipeline segment between S and F is (0,4), the second frame is (1,5), and so on.

At each time step, the r twiddle operators (T) collectively read a frame (one complex number per
operator), perform an element-wise complex multiplication, and write the resulting frame. Notice that each
stream is operated on independently. Similarly, the kernel operator (F) reads a frame, computes the radix-r
kernel, and writes the resulting frame. In this case, the streams are not independent: each data item in the
output frame is a function of every data point in the input frame.

The twiddle and kernel operators pipeline nicely because during each time step they independentl\ read
and write a single number. However, the pipelined shuffle operator (S) is less well behaved. To produce
one output Fý nme, the shuffle operator must read and store the r data points from each stream. Thus. S
requires r memory cycles to produce each frame. (Notice that S transposes the data directly into an r
pvpdine segment, c s,:. ,tarting with data already in an r x .. pipelinc, S still performs rw-to-coiuea'"
motions.) This is an example of the enemorv-bank conflict discussed in 18, pp. 3 1-321. The conflict is clear
in Figure I (b). To assemble its first output frame, S must read both 0 and 4 from the upper siream to its left.
Then it must read I and 5 from the lower stream, and so on.
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Figure 1: Derivation of the phase-rotation FFT. (a) Initial con-

stant-geometry FFT. (b) Pipelined constant geometry EFT. (c) Pipelined 17FT

based on cyclic rotations. (d) Pipelined phase-rotation 171.
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Figure 2: Replacing the perfect shuffle with three simpler shuffles.

We would like to replace the troublesome perfect shuffle operation with aparallel-pipeline shuffle, where

each stream is read and written independently and in parallel. The next section describes the insights that

make this possible.

2.3. The phase-rotation concept

This section describes how to replace the perfect shuffle by a parallel-pipeline shuffle, so that we can access

the data streams in parallel. The basic idea is to rotate the data within frames, and then compensate for these

motions by phase rotations of the twiddle factors.

We begin with a "detour" around the perfect shuffle. That is, we find a sequence of three simpler shuftlcs

that is equivalent to the perfect shuffle. This idea is shown graphically in Figure 2 for an .V-point radix-2

example. Each radix-2 pipeline segment is represented as matrix. Each row in the matrix corresponds to a

stream, and each column corresponds to a frame. Frames (columns) are arranged left-to-right in reverse-time

order in the matrix.

The first step in Figure 2 is a set of cyclic rotations, called C which rotates each frame. These

rotations are frame-wise in the sense that only data points contained in the same frame are rotated across
the streams. Notice that in the radix-2 case, half of the rotations leave the corresponding frame unchanged.

The next step is a parallel-pipeline shuffle S, which permutes the data in each stream. Notice that no data

points need to be transferred between streams in this step. The last step is anothei set of frame-wise cyclic
rotations, called C1 ,1 t, which leave the data in the same order that the perfect shuffle would. Note that

C.IoL, and Cfp, change the number of rotations per frame at different paces, one slow and one fast. These

varying rates are difficult to see in the radix-2 case, but are much more apparent in the higher-radix cases.

If we apply the idea in Figure 2) to each stage of the pipelined FFT in Figure I(b). replacing each perfect

shuffle with three simpler shuffles, we get a pipelined FFT based on cyclic rotations, which is shown in
Figure 1 (c).

The kind of basic frame-wise rotations in Figure I(c) that is applied at slow-varying, and then fast-
varying rates, is represented in general by the r x r cyclic (circular) shift permutation matrix C,, made by

permuting the rows of the identity matrix down by one row, and moving the bottom row tip to the top. For
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Figure 3: Interpretation of FrC,. = DF,.

example,
0 0 0 1/

C4 I 0 0 0
C= 0 1 0 0

0 0 1 0

The key insight of the phase-rotation FFT is that the cyclic shift theorem for the DFT can be applied to the
cyclic shift operators in Figure 1(c). In matrix form, the cyclic shift theorem for a DFT is the relation

FC, = DFr. FV

where Dr = diag( 1,,j .  .) is a set of twiddles, and the DFT matrix of size r is

F jk)r-I

Sr 3.k=
2•'.

where - . For the pipelined FFT, (1) says that phasor multipliers after a DFT kernel give the
same effect as physical data rotations before the DFT kernel. Likewise, physical rotations after the kernel
are equivalent to phasor multipliers before it. The meaning of (1) is shown graphically in Figure 3 for a
pipelined radix-2 kernel. The shift theorem implies that the data rotations in Figure l(c) can be replaced
by constant phasor multipliers. These phasors can then be absorbed by the twiddle factors on either side of
the kernel, leaving only a parallel-pipeline shuffle. The result is the pipelined phase-rotation FFT, which is
shown in Figure 1 (d). This completes the informal derivation of the phase-rotation FFT.

The structure of the phase-rotation FFT in Figure I(d) is quite similar to the original pipelined FFT in
Figure l(b). The twiddle operators (D') are identical to the original twiddle operators (T), except now
the twiddles incorporate the original twiddles, phasor multipliers for the Cf,,,t operator from the previous
stage, and phasor multipliers for the C.,,,, operator from the next stage. The kernel operators are identical
as well. The important difference is that the troublesome perfect shuffle operator has now been replaced by
a parallel-pipeline shuffle that requires no communication across the streams.

There are several other important properties of the phase-rotation FFT. First, there are no additional
multiplications or additions, compared to the original pipelined FFT in Figure I(a). Second, the only
internal communication across streams occurs at the kernel, and this communication is constrained, in that
only data points within a single frame need to be switched across channels, and the switching is lixed for
all frames.

3. Improved phase-rotation FFT

In this section we give a formal definition of an improved version of the original phase-rotation F-l-
described in [9). The new version replaces the digit-reversing permutation in the original phase-rotation
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FFT with a parallel-pipeline shuffle, followed by a frame-wise cyclic rotation. The advantage of this new

approach is that during the digit-reversing step at the end, all communication between streams is limited to

data points within a single frame.

Forradix r and N = r' points(n > l), the 1-dimensional phase-rotation FFT is a matrix factorization of

the N-point DFT matrix F.--. Starting with the Pease constant-geometry factorization, we replace its perfect

shuffles S by S = CfJtSCsI,,,. Similarly, at the left end we replace the radix-r index-digit-reversing

permutation Q Q.v.. of N data points by C z where is another parallel-pipeline

shuffle that will be defined formally in Section 4. The phase-rotation FFT is then defined by:

n( vi ~orous
F Q. (FSTJ) .... algebraic )

J=I shuffling

=CTl~ •sq (2)as

n =1 I

Let s = N/r as before, and r' = N/r 2 . F is a direct (tensor, Kronecker) product I., Fr

diag(F,. F ... , Fr). We interpret this as a kernel DFT F, operating on s successive frames of i* points

placed in the pipeline. For j = 1 : n, the other parts of (2) are defined by
r-I

CsIO0,V = ED (Ire _ Cr')
k=O

Dfrst = 1' g(6iCT)q
k=0

,.,j = D.rp rj

D r = d ia 9( 2 ...z , ., r, -I •

D rI+ I = (d ia g1 ( 1. - + ";j +I ... •:; ~ )+- " '

D-1-v = D-')

D.,o Ir (4',Di)

k=O

D',,. = CT,, ,T'D,, f,-st

D"0,•= S D'.,1.9

r--

Dfat3 ,D fI 's st1ll

'I j = I .N ( r: D k)+ I

Tj' C.,t,,,,.Tj Cr'
=T D- -- T- DD', = S D•,,) ••:

D' D/,t,.,,TfD-,'I.,'. j = ",t

-- ~~~~~ - ,.91i~ m ll i



D',= D". "T = D", (3)

The direct sums are of the form

r--1

@ Ak. = diag(AO Ai. Ar-
k=O

and AT denotes the transpose of A. See [101 for more on the basic definitions and relations used to derive
(2), as well as the generalization to higher dimension FFT's.

Note that the stages in (2) are counted in reverse time order by the index j. This is in keeping wkith the

fact that (2) is a decimation-in-frequency (DIF) version of the FFT. The transpose of (2), with the product

Ill,, is the decimation-in-time (DIT) vrsion of the phase-rotation ITT.

A CSIo,,, shuffle and its inverse remain at the input and output ends of the pipeline, respectively. As
we have seen, (,I,•, is a completely frame-wise rotation. It rotates (commutates) the data within each

successive frame (column r-vector) of the r x s pipeline segment for a stage. There is also an implicit
frame-wise broadcast within each FF1 kernel engine, when an r-point DFT is somehow computed. So in

the phase-rotation F"FT, data motion is all parallel, except for frame-wise motions at 1O and at every FF1

kernel. The simplicity of the phase-rotation FF1 is that no data point ever moves both down and across the

pipeline in one time-step.

4. Pipeline recipes

While the structure of the pipelined phase-rotation FFT is extremely simple, experience has taught us

that generating the appropriate twiddles and shuffle indices from the matrix formulations of (2) and (3) is

difficult and confusing. To address this problem, we have developed a collection of recipes for generating
the phase-rotation twiddles and shuffle indices off-line. The recipes are defined for any I D phase-rotation
FFT of N " = points. Following [81, they are written in a MATLAB-like format.

As we saw in (2), the pipelined phase-rotation FFT performs a typical "twiddle, shuffle, kernel" cycle

at each stage. Only the twiddles vary from stage to stage, and there is a digit-reversing shuffle equivalent

at the end. To implement this FFT using parallel r x .• pipeline segments (one per stage). we insert the
N-vector of input data x into the pipeline as an r ' .x array X: the first r points of x go into the first frame

(column) X, the second r points go into the second frame, and so on. We must also have a shuffle address
and a twiddle factor ready for each point in the pipeline. In other words, we would like to fill one r

copy A of the pipeline segment with addresses, and another copy D with twiddles,.

Then the processors in each stage of the pipeline will know what to do at each time-step t 0:.; - I.

Using the current frame of addresses, they will fetch the current r-frame of data X(0:r - I.. l(O:tr - I. ,f
and the current r-frame of twiddles D(.,:r - 1. .1(0:r - 1, t)) (pointwise in parallel), multiply these two

frames pointwise, then do an r-point DFT F, of the twiddled data frame. That is how each stage FSD,' is
implemented in the parallel pipeline.

The twiddle and shuffle recipes in this section are "in place" in the sense that they work inide the

r x .s pipeline segments that will contain the desired addresses and twiddles. They are not "in place" in the

usual sense, as we will freely use an input ,'nd an output copy of a pipeline segment. This approach ivoids

constructing and operating with large N x N matrices (each containing only N non-zero elements). Each
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parallel-pipeline function recipe is given a name similar to that of the X x N' matrix factor in the FFT (2)
that it effectively implements.

4.1. Shuffle recipes

As a convention, pipeline addresses (pipeline array row and column indices) run O:r - I and 0:., - 1,
respectively. To do parallel-pipeline shuffles, we only need the horizontal (column) addresses, since the
data inside each pipe will only jump within that stream (row). The cro-,s-stream shuffles, Cslow and Cfat. are
implemented using -', , a cyclic rotation of a frame (a vertical slice of the parallel pipeline) that has the effect
ofYr = CrXr. ;r1r takes a column r-vector = (.r0 .. ... ) p y, ( .rI_.. . .r ...... '-1,

function Y = Cslow(X)
col = 0
fork= I :r

for j = I : r'
Y(:.co/) = ,(.'(:.co1))
col = col + I

end
end

function Y = Cfast(NY)
col = 0
forj = I r

for k = I
Y(:. col) = ,( Xk ( :.co1))
col = col + I

end
end

The inverses of Cslow and Cfast are formed by simply reversing mr,. Next, we detine some perfect ,stIflOeI.

function Y = S(.N) !stride by .•
col = 1)
for rouw = 0 : r - I

forkI = 0: r: . - r
k2 = ki + r -

Y(row.ki : k2) = X(:.col)
col = coi + I

end
enc.

function V = S- (X) !stride by r
col = 0
for row =0: r- I
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forkl =O: r" -r
k2 = kl + r -
Y'(:,colh = X(,ro,.k I :k2)

col = col + I
end

end

To implement the parallel-pipeline shuffles, S, S , and Q, we will use ihe parallel-pipeline addresses 1,
which are computed by the following function:

function A = S addresses( r. )

a = (0. r'. r - I)1')T

col 0
for = I r'

for= 4-'1
.-h . ,ol ) = a

col = ol -- I
a (a)

end

a =a
end

Looking closely, one can see Cfast-r at work producing the addresses .I in the last function. The addresses
- can also be generated by loading a pipeline segment with simple r x, r address blocks B),_ and then
applying Cfast-1 to the pipeline segment. The first block to load is IB, = diag(0:r':.s - I )* 1,.,, where 1 .
is the r e r matrix ".-,t,%se entries are all l's. The next block is always 1B,, =1,r + 1,.-, until the pipeline
segmcnt contains r' blocks and is full.

function Y = S(XV)

.I = S addresses( r.. )
for row = 0 r - I

Y(ro .0') . X(ro. .-I( row'.:))
end

function I S (.)

,-I = S.addresses( r..,)
[.- I.I. sort(. )

for rou" = O r - I
Y'If o , "i : \(ro ,. I( row,:. ))

end

In the above functions, sort(A) sorts each row of an array .1 in ascending order. It returns the row-,orted
array 4A and the corresponding array of addresses I where the successive row elements were found in I.

After we have usorted the addresses A for S. I has the addresses for S

9



The pipeline addresses for Q are obtained by block-perfect shuffles (along the length of the pipeline) of
the addresses for S:

function V = Q(.X, I)

.A = -addresses( r. s)

ifn > 2
for n.s i (• -2): - 1

stride = rs
block r'-2`' block length
col2 = 0
fork, = I • stride

coil =(k- I) I block
fork= k Ir

for j = 1: block
B(:,col2) = A(:,colIl)
coil =roil + I
col2 = col2 + I

end
coil = coil + (stride - I)* block

end
end
A= B

end
end

for row= 0 : r- I
Y(rotv, :) - X(row, A(rotv, :))

end

4.2. Twiddle recipes

Evx:ry twiddle matrix D is diagonal, so it operates on a data vector as a point-to-point vector multiply.
Gi-.:en some permutation matrix P, a new twiddle matrix PDPT is equivalent to a rediagonalizing of the
vector shuffle of the diagonal of D, that is, PDPT = diag(P*diag(D)). (This is a MATLAB notation: diag()
pw , the :iagonal of a matrix in a vector, and puts a vector in the diagonal of a matrix.) Since we want
to -erforri shuffles within pipeline arrays, we reshape the twiddle N-vector diag( D) as an r x .s pipeline
at, y D, just as we originally reshaped the data vector. Then we shuffle the pipelined twiddles, to effect the
eqklvalen: of the vector shuffle-P*diag(D). So we interpret the.P-.DPr operator as an in-pipeline shuffle
of ý'ie pipelined twiddles D, which are then in position to operate on the pipelined data N directly by point-
to-r- uint multiplication, Y = D. * X. (As mentioned, the data will actually be twiddled frame-by-frame in
the pipelined implementation.)

We will interpret the twiddles expressed in (3) this way. Each twiddle function below returTlan.'. .K
array ) of twiddle factors (the actual twiddling of the data is not included):

10



function !)t Dslow-twiddles(r,. )
4:.,- cxp(-2Tri/r)
I = 0

forj = 0: (r - I)

fork = 0: (r'- I)
D. 1~(,) =( 1,1-1 2 r t•)

1=t+1

end
end

function Df,,t = Dfast-twiddles( r, .s)
wj = exp(-21ri/r)
t=0

fork= 0: (r'- 1)
forj = 0: (r - 1)

Dfast(:,t) = ( rw ,2i ,(-l).7)

end
end

The inverses of D~to,, and Dfidt are just their complex conjugates, and are generated simply by replacing
wJ by wf- 1. For stages j = 17:n (counted down from n), we generate pipelined twiddles 1- by

function "1. = T-twiddles(r, .s, j)
j= cxp(2-,ri/rj+')
S IrJ+I

fork 0: (r- 1) ! direct sum loop
t, k
forp = 0: (r- 1)

end
t1 -" + I
t,= t + r5-
fort = t1 :12 ! fill next column from last7i,(:4) ,w: 7j(:, t- 1)'W)(: t)=,..
end

end

ifj < n
12 -" r2

fork = 0: (N/rj+')

2= k d
1=0
for t() t ":12

II



fI," 10) =J '(:. ) !copy columns

end

end

"The rc ,t of the twiddle arrays can now be detined in terms of the shuffles:

DL, , =S- 1(;, 1)
= Cslow( D',,)

1" = Cslow( T1 )

D',= g;(D 7. D-'

if I <j < n,
D1* T'. * Dfasf

end

5. Implementation issues

In this section we describe issues that arise when the phase-rotation FF1T is implemented on a real parallel
system. In particular, we describe implementation approaches for the radix-2 FFT on the iWarp system.
The main result is a scalable implementation of the pipelined phase-rotation FFT that runs at the full 40
Mbytes/second rate of the iWarp physical links.

5.1. iWarp

The iWarp is a private-memory multicomputerdeveloped jointly by Intel and Carnegie Mellon [1, 21. iWarp
systems are 2-dimensional tori ofiWarp nodes, ranging in size frQn_4o 1024 nodes. Each node consists of

an Narp component, up to 16 Mbytes of off-chip local memory, and a set of 8 unidirectional communication
fin. that physically connect the node to four neighboring noues.

The iWarp component is a VLSI chip that contains a processing agent and a communication atgent. The
processing agent is a general-purpose load-store microprocessor, centered around a 128 x 32-biurgieeer
file, that runs at a maximum rate of 20 MFLOPs. The local memory is accessed at a rate of 160 Mbytes/see.
Each link runs at 40 Mbytes/sec, for a maximum aggregate bandwidth of 320 Mbytes/sec per node.

The key feature of the iWarp is its communication system, which is summarized in Figure 4. Fach

communication agent contains a set of 20 hardware FIFO quenes. Each quteue can hold up to 8 32-hit
wor 's. iWarp nodes communicate with other nodes using unidirectional point-to-point structures called
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node 0 node 1 node 2

pathway 0, 1, 4> pathway .. 2.3,5>

linkI

node 3 node 4 node 5

Figure 4: iWarp comnmnication concepts.

p,:m'uv.;. Each pathway is a sequence of queues. Pathways can be created and destroyed dynamically at
run[ime. FiLure 4 shows a pair of such pathways.

Data traveling along a pathway passes from queue to queue automaticallv, without disturbing the
computations on intermediate nodes. For example, in Figure 4, data items traveling over the pair of
pathways do not disturb the computation on node 1. The latency from queue to queue is small, ranging
from 100-300 nanoseconds.

Multiple pathways can share the same link. For example, in Figure 4, two pathways share the link from
node I to node 2. In this case, the pathways share the link bandwidth in a round-robin fashion, one word at
a time. If only one pathway is sending data over a link, then it gets the entire link bandwidth. If multiple
pathways are sending data over a link, then the link can be utilized at the full 40 Mbytes/sec, and each
pathway is guaranteed a proportional fraction of the bandwidth.

User programs can directly access the queues, one word at a time, by reading and writing special registers
in the register file called gates. To an iWarp instruction, a gate is just another register in the register tile. The
important point is that a program can read or write a word in a queue with the latency of a register access.
A single instruction can read and write tip to 4 words from queues, with a maximum aggregate bandwidth
of 160 Mbytes/sec. Gates can be accessed directly from user-level C programs.

5.2. "clapping strategies on iVarp

The problem is to develop a mapping of the llowgraph in Figure I(d) to an iWarp array. The simplest
mapping strategy is to assign each flowgraph node to a unique processor node of a. linear array,7... ..rouiit
the [lowgraph arcs through this array, and then embed the resulting linear array in the iWarp torus. This
approach, called the PHASE5 mapping because it uses 5 iWarp nodes for each FF1 stage, is shown in
Figure 5(a).

Fach iMarp node in PHASE5 executes a small node program that implements its flowgraph operator.
Each twiddle node (1)") repeatedly reads a complex number from its input pathway (via the gates), multiplies
it by -he appropriate twiddle (precomputed off-line using the recipes in Section 4.2), and sends the result to
its output pathway (again, via the gates). Each shuffle operator (S) repeatedly reads a complex data item
f-om it, ýnput pathway, stores it in memory, and uses the appropriate shuffle index (again precomputed
off-line using tie recipes in Section 4.1) to send an appropriate double-buffered data point to the output
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Figure 5: Strategies for mapping one stage ol the FFT onto a linear array.

(a) PHASE5 mapping. (b) PHASE3 mlapping.

pathway. Tile kernel node (F) repeatedly reads two complex numbers from its input pathways, performs

the radix-2 DFT kernel operation, and outputs two complex numbers to its output pathways.

Another approach, the PHASE3 mapping, combines the twiddle and shuffle operators on a single node,

as shown in Figure 5(b), so that each stage requires 3 nodes instead of 5 nodes. As we shall see, the

communication and computation throughputs of the two mappings are identical. The advantage of the

PHASE3 mapping is that it is more node-efficient, requiring fewer nodes per stage than the PHASE5

mapping. The advantage of the PHASE5 mapping is its simplicity. Each node is assigned exactly one

operator from the flowgraph.

Figure 6 shows a working implementation of a 16K-point radix-2 phase-rotation FF1 on a 64-node iWarp

array at Carnegie Mellon. The large squares are iWarp nodes, labeled with the corresponding operator and

stage number. The small squares are queues. The arrows are iWarp pathways. The implementation is based

on tile PHASE3 mapping from FigTffre 5(b). Each of the 14 FIFTa'ges uses 3 nodes, with an additional 3

nodes for the parallel-pipeline digit-reversing step at the end.

5.3. Performance

While the details are beyond the scope of this paper, each iteration of each node program in the PHASE3

and PHASE5 mappings runs in at most 8 clocks. At the peak rate of 40 Mbytes/sec, each link can produce
and consume a 32-bit floating-point number every 2 clocks. Further, each data point in the pipeline is a

complex number consisting of a pair of 32-bit floating-point words. As a result, each pathway requires

exactly half of the available link bandwidth. Since each link is shared by two pathways, and since the

iWarp communication agent gives each pathway an equal share of the link bandwidth, without disturbing

the computations on intermediate nodes, each link is fully utilized. The result is a radix-2 FFT that runs

at the full 40 Mbytes/sec rate of an iWarp link, regardless of the number of points in the FFFT! Since each
sample consists of 8 bytes, the FFFT runs at a constant rate of 5 Msamples/sec. Given a sufficient nutmber of

node,;, the iWarp phase-rotation FFT's will produce arbitrarily large FFT"s at this rate. Perhaps even more

important, the performance is the same on smaller FFT's.

Another way to characterize the performance of the PIJASE3 and PHASE5 mappings is by its comn-

putational thrcughput, expressed as millions of Iloating-point opcrations per second (MFLOPS). However,
there is a subtlety involved in using MFLOPS as a performance measure. The iWarp phase-rotation 1F--7
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Figure 6: 16K-point pipelined phase-rotation FFT running at 40
Mbytes/sec (350 NIFLOPS) on iMarp

performs performs 16 floating-point operations per iteration per stage (2 adds and 4 multiplies by each
twiddle operator, and 4 adds by the kernel operator). But the standard formula for computing FFT MFLOPS
is 5N log N floating-point operations per N-point FFT [31, which implies 10 floating-point operations per
iteration per stage. Therefore, in order to do fair comparisons with other FFT algorithms, we must compute
the phase rotation performance using the standard of 10 floating-point operations per iteration per stage.
even though the phase-rotation FFT is actually performing 16 floating-point operations per iteration per
stage.

Since each node program executes its computation in at most 8 clocks, and since each clock is 50
nanoseconds, each stage of the iWarp phase-rotation FFT runs at a rate of

10 fp operations I clock I x 109 nanosecondsx x =25 MFLOPS
8 clocks 50 nanoseconds I second

for a total performance over all of the log.N stages of 25 log N. MFLOPS. For example, the 16K-point
FFT in Figure 6 achieves a measured performance of 25 14 = 350 MFLOPS (single precision) on
iWarp. As a point of comparison, a highly optimized 16K-point FFT has been measured at 237 MFLOPS
(double precision) on a single-processor Cray Y-MP [3, p. 1141. The numbers are not directly comparable
because of the different floating-point precisions, but they do suggest that the absolute performance of the
phase-rotation FFT on iWarp is quite good.

6. Concluding remarks

We have described an improved version of the Whelchel pipelined phase-rotation FFT1, developed recipes
for generating the appropriate twiddles and shuffle indices off-line and directly in terms of (he parallel
pipeline, outlined mapping approaches for the radix-2 case on pthe iWarp parallel computer, and presented
measured performance results of an implementation on iWarp.

The improvement on the original phase-rotation FFT is significant in that it eliminates a potential pipeline
bottleneck during the digit reversing step at the end. The twiddle and shuffle recipes should be helpful
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to the programmer who wants to implement the pipelined phase rotation FFT. The iWarp implementation
validates a simple and realistic approach for building scalable pipelined FFT's on a programmable parallel
system. Further, the implementation demonstrates that, given a balanced parallel computer architecture
with word-level access to the communication links, it is possible to build FFT's that run at the full link
bandwidth of the links, even when the FFT's are relatively small.
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